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Abstnd-A certain conservation integral. the so called M-integral. recently exploited by L. B. Freund in
the calculation of stress intensity factors for cracks in homogeneous elastic media. is applied to the
calculation of energy release rates for interface edge cracks. Specifically. for an edge crack along the
interface between two elastic wedges of different opening angles and dissimilar elastic properties. and that
is subjected to point loads at the apex. a relation is derived among the length of the crack, the energy
release rate of the crack. lhe applied loads, the wedge angle~ and the material parameters.

INTRODUCTION

In a recent paper, L. B. Freund [I] demonstrated the usefulness of the M-integral conservation
law in the determination of stress intensity factors for 2-dimensional cracks in homogeneous
elastic bodies with certain geometric properties. For a detailed discussion of the M-integral and
its special features that permit the applications given by Freund, the reader is referred to that
paper and the references contained therein. Liberal use will be made in this paper of many of
the results derived by Freund.

What is demonstrated here, is that the M -integral can be used to determine the energy
release rate for certain interface cracks in much the same way as for cracks in homogeneous
bodies.

Three observations are needed for this application. The first, due to Smelzer and Gurtin [2],
is that the J-integral On a small arc about an interface crack is equal to the energy release rate,
as in the homogeneous case. One difference for cracks in homogeneous bodies is that the
J -integral may also be related to the stress intensity factor, while for interface cracks, the
I-integral is related to a composite stress intensity factor which has dubious utility (see Smelzer
and Gurtin [2]). The second observation involves the nature of the far stress field for bonded
dissimilar elastic wedges, and appeals to the analysis presented by Bogy [3] for bonded
dissimilar elastic quarter planes. The third observation is that the integrand of the M -integral is
continuous across bonded interfaces lying along radial lines of the chosen coordinate system.

STATEMENT AND ANALYSIS OF THE PROBLEM

We present here an extension of the result obtained by Freund for the elastic half-space
with an edge crack whose comers are subjected to normal and shear point loads. Specifically,
the M-integral conservation law is applied to the 2-dimensional plane strain problem of two
infinite isotropic elastic wedges with opening angles w' and wM

, respectively, and with different
elastic properties (exhibited through E', v' and EM, vM, where E and v denote Young's modulus
and Poisson's ratio), which are bonded together along one edge except for a crack of length I
extending from the apex and whose comers are subjected to a system of normal and shear
point loads, given by P', Q', P" and OW (see Fig. I). An application of the M-integral
conservation law yields a relation among the parameters P, Q, E P, I and the energy release
rate of the crack (symbols without primes refer to both materials). It is clear that the
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Fig. I.

complexity of the problem precludes the determination of the energy release rate by first
solving the corresponding boundary value problem.

The M-integral is given by

(l)

where W is the elastic energy density, n; is the unit normal to C (which we take to be directed
to the right when C is traversed in a given direction) and Tk is the traction acting on the
material to the left of C. The stresses (Tij =(Tji are related to the elastic energy Wand the strains
Ejj =(Ujj +uj.;)/2 by 2W =(TjjUjj, where Uj denote the displacements. The traction T. is given by
T. =(Ti/lnj. The elastic body is assumed to be in equlibrium without body forces, i.e. (Tj/j =0, and
the stress-strain relation is given by (Tjj =aW/dE;j. The conservation law for M is that M =0
whenever C is a closed path surrounding a simply connected region in the body.

Consider the integral

M=M'tM"

= J;. (Wn;x; - TkUk.;X;) ds

= Jr (W'n;.xj - Ticuic.;x;) ds +fr. (W"n'lxj - T:ul:.,x,) ds,

where the contours f' and 1''' are as indicated in Fig. I and I' = f' U1'''. It follows easily from the
discussion by Freund, that there is zero contribution to M from the parts of I' along the crack
faces and the outside edges of the wedge. Moreover, the value of M on the vanishingly small
arc around the crack tip is /(dP/dl), where P(I) is the potential energy of the wedge with a
crack of length I. (See Rice[4] and Smelzer and Gurtin[2].) Hence, on this small arc, M is the
product of the crack length and the rate of decrease of the energy with respect to crack length.

The contributions to M' and Mil from the small arcs around the corner points of the wedge
follow from a general result derived by Freund for an infinite elastic wedge with corner loads.
In particular, from the small corner arc in f' we obtain the contribution

(1- 1/'2) [F'2 F,2 ]___ a + t

E' w'+sinw' w'-sinw"
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and from I'"
(l - ,,"2) [P"2 P"2]
~=,:-"':' _-;:---'!";---:: + I

E" w" +sin wIt wIt - sin w" ,

where, employing Freund's notation,

P~ =- p' cos (w'/2) - Q' sin (w'/2),

p; =P' sin (w'/2) - Q' cos (w' /2),

P: =- P" cos (w"/2) - Q" cos (w"/2),

p~ =- P" sin (w"/2) +Q" cos (w"/2).
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On the bond line, X2 =0, x. > I, the contributions to M from r and I'" cancel, since, among
the stress and displacement components, only O'IJ is discontinuous across the interface, and on
that line njX/ =0 (because the interface is radial) and TtUk,lXi =(UI.I0'21 +U2.10'22)XI'

It remains to determine the contribution from the large arc for which it suffices to know the
far field solution for two wedges bonded together with no crack and with apex loads P' +P"
and Q' - 0". From the analysis presented by Bogy[3] for two bonded quarter planes, it is clear
that the far field is radial. More precisely, if the elastic fields are represented with respect to
polar coordinates (r, 8), then ru" and ru" vanish for large r uniformly in 8, whereas ru" does
not. Consequently, on the large arc we may assume 0'" and 0'" are zero. It is easy to see that in
this case, to satisfy the equilibrium equations and the compatability equation, we must take for
the stress field

r
A cos 8+B sin 8

0'" =- 0'" =0'" =O. (2)

The four constants A', B', A" and B" may be calculated from the four conditions

ui(r, 8~0-)=uf(r, 8~0+),

u;(r, 8~O-) = u",(r, 8~O+),

f... rO':r(r, 8) cos (8) d8 +fo"· ru~r(r, 8) cos (8) d8 = - (P' +P"),

10 • rO':r(r, 8) sin (8) d8 +L"· ru~r(r, 8) sin (8) d8 =(Q' - Q").
-.. 0

(3)

(4)

(5)

(6)

Equations (3) and (4) assert continuity for the displacements on the bond line, while equations
(5) and (6) express the equilibrium of tractions on the wedge - w':S 8:s tIJ", O:s r:S R, where R
is the radius of the large arc. A simple calculation shows that (5) and (6) reduce to

A'(l- cos 2t1J')- B'(2t1J' - sin 2t1J')- A"(1-cos 2t1J") - B"(2t1J" - sin 2t1J") =4(Q' - Q") (7)

- A'(2t1J' +sin 2t1J') +B'(1- cos 2t1J') - A"(2t1J" +sin 2t1J") - B"(1- cos 2t1J") = -4(P' +PIll. (8)

Substitution of (2) into the polar form of the stress-strain law followed by the application of
(3) and (4) yields the relations

B'/B" = A'/A" = (l +a)/(l- a),

where a is one of the two Dundurs bi-material parameters given by (see Bogy[3])

I
E'(l - ,,"2) - E"(l - p'2) .
E'( I - pia) +E"( I _ pl2) for plane stram

a=
E'-E"
E' +E" for generalized plane stress.

(9)
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It is now an easy matter to solve equations (7), (8) and (9) for A', B', A" and B". In particular,
we obtain

A' = (a( Q' - Q") + b(P' + P"»(4/d)

B' = (- a(P' +P") - c( Q' - Q"»(4/d)

where

a = 0- cos 2w') - (1- a)O_ cos 2w")
l+a

b = -(2w' - sin 2w') - (1- a)(2w" - sin 2w")
l+a

c =-(2w' +sin 2w') - G~: )(2w"+sin 2w")

d = a2 -bc.

A" and B" may now be calculated from (9).
As observed by Freund, for the stress state (2), the integrand of M is

Consequently, the contribution to M from the large arc is

I (1 - 11'2) fO 1(1- 11"2) r'"-z-r _O" (A' cos 8+B' sin 8)2 d8 - Z E" J
o

(A" cos 8+B" sin 8) d8

I(1-II')2[J
O (I-a) r'" ]= -Z-r _O" (A' cos 8+B' sin 8)2 d8 + I +a J

o
(A' cos 8+B' sin 8) d8

=_0-;'2) (b(P' +p")2 +c( Q' - Q")2 +2a(P' +P")( Q' - Q"»(2/d),

Line (10) follows from (9) and the observation that

(10)

(11)

whereas, line (11) is derived by simple but tedious algebraic manipulations.
Combining the contributions to M from the large arc, the two small arcs at the apex and the

arc around the crack tip and appealing to the conservation law, we obtain

,d: = (1 ~;'2)[_(b(P' +p")2 +c(Q' _ Q")2+ 2a(P' +P")(Q' - Q'1)(2/d)

+~(P'2(2w' - sin 2w') +Q,2(2w' +sin 2w') +2P'Q'(cos 2w' - 1»/(w'2 - sin2w')

+~G~ :)(PII2(2w" - sin 2w'1 + Q,I2(2w" + sin 2w")+ 2P"Q"(cos 2w" -l»/(w ll2
- sin2w")].

(12)

An important special case of (12) is that of two bonded dissimilar quarter planes with an
edge interface crack. Setting w' = w" =11'/2 in (12) yields
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It should be noted that if P' = p. IE P, Q' = Q" == Q and a = 0, then (13) reduces to the result
obtained by Freund for identical quarter planes. Of course, when a =0, the response of the
bonded quarter planes is the same as for a homogeneous half-space; as described by
Dundurs [5], the two quarter planes are "consonant in tension parallel to the interface."

Another interesting case in (12) is when a =± 1. Due to symmetry we consider only a =-1
corresponding to which (12) becomes

I d: =(I ~;,'2) [P I2(2w' _ sin 2w') +Q'2(2w' +sin 2w') +2P'Q'(cos 2w' - 1»/(w'2 - sin2w'). (14)

It should not be surprising that in (14) only P' and Q' appear, since a =-I corresponds to
E" = 00.

It should also be noted that for P' =P" == P, Q' =Q" == Q and w' = w" ='11'/2, the level curves
of l(dP/dl) in the (P, Q)-plane are ellipses (straight lines if a =0) centered at (0,0). From this
we may conclude as did Freund, that crack extension may result when the unloading of P and
Q occurs along certain paths in the (P, Q)-plane. Moreover, this obviously is the case also in
(14) with w' yI:. '11'/2. It is evident in (12), that in general, regardless of the values of w' and w" and
a, this phenomenon is to be expected.
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